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Weighted Configuration Model
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Abstract. The configuration model is one of the most successful models for generating uncor-
related random networks. We analyze its behavior when the expected degree sequence follows a
power law with exponent smaller than two. In this situation,the resulting network can be viewed as
a weighted network with non trivial correlations between strength and degree. Our results are tested
against large scale numerical simulations, finding excellent agreement.

INTRODUCTION

Complex networked systems represent better than any other the idea of complexity.
When looking at their large scale topological properties, real networks are far more
complex than classical random graphs [1, 2], showing emerging properties not obvious at
the level of their elementary constituents –the small-world effect, scale-free connectivity,
clustering, degree correlations, etc. When looking at the dynamical processes that take
place on top of them, these large scale topological properties have striking consequences
on the behavior of the system –absence of epidemic threshold, resilience to damage,
etc. The understanding that many real world systems of interacting elements can be
mapped into graphs or networks has led to a surge of interest in the field of complex
networks and to the development of a theoretical frameworksable to properly analyze
them [3, 4, 5]. Under this approach, the elements of the system are mapped into vertices
whereas interactions among these elements are representedas edges, or links, among
vertices of the network.

In an attempt to bring nearer theory and reality, many researchers working on the
new rapidly evolving science of complex networks have recently shifted focus from
unweighted graphs to weighted networks[6, 7, 8, 9, 10, 11]. Commonly, interactions
between elements in network-representable complex real systems -may they be com-
munication systems, such as the Internet, or transportation infrastructures, social com-
munities, biological or biochemical systems- are not of thesame magnitude. It seems
natural that the first more simple representations, where edges between pairs of vertices
are quantified just as present or absent, give way to more complex ones, where edges are
no longer in binary states but may stand for connections of different strength.

In an unweighted network, all the topological properties can be expressed as a func-
tion of the adjacency matrix,Ai j , whose elements take the value 1 when verticesi and j
are connected by an edge and 0 otherwise. Using this matrix, the degree of a vertex –the



number of neighbors or connections it has– becomes

ki = ∑
j

Ai j . (1)

The distribution ofki , P(k), is called the degree distribution of the network, and it
arises as the most fundamental topological characteristic. Surprisingly, in a vast majority
of cases, real networks show degree distributions following power laws of the form
P(k)∼ k−γ for k≫ 1 and 2< γ < 3. This implies that the second moment of the degree
distribution,〈k2〉, diverges in the thermodynamic limit, which causes the lossof any
characteristic degree scale. For this reason, these class of networks are called scale-
free (SF). This feature of the degree distribution is, eventually, the responsible for the
surprising behavior of dynamical processes that run on top of these networks.

For weighted networks, the adjacency matrix is no longer thefundamental quantity
ruling the properties of the network. Instead, we have to consider the matrixωi j , which
measures the weight between the pair of verticesi and j, that is, the magnitude of the
connection betweeni and j. The analogous quantity to the vertex degree is now the
vertex strength, defined as

si = ∑
j

ωi j Ai j . (2)

This quantity measures the total strength of vertexi as the sum of the weights of all its
connections. If the weights of a given vertex are not correlated with the vertex degree,
the average strength of a vertex of degreeki is simply given by

s̄(ki) = 〈ω〉ki , (3)

where〈ω〉 is the average weight of the edges of the network. In this situation, strength
and degree are proportional and weights do not incorporate more information to the
network than that already present in the adjacency matrix. Real networks show, however,
a very different scaling, with a non trivial relation between strength and degree of the
form

si ∼ kβ
i , (4)

with β 6= 1 (typically β > 1). This anomalous scaling reveals the presence of correla-
tions between strength and degree and, thus, the need to model network formation in
an weighted basis, where the evolution of the network is linked to the evolution of the
weights assigned to connections. In this paper, we present amodel of weighted net-
work based on the configuration model. We shall show that, when the expected degree
sequence follows a power law with exponent smaller than 2, the resulting network is
weighted and shows a non trivial scaling between strength and degree.

THE CONFIGURATION MODEL

The configuration model was first introduced as an algorithm to generate uncorrelated
random networks with a given degree distribution,P(k) [12, 13, 14, 15]. The model



operates in two steps:

• We start assigning to each vertexi, out of a set ofN, a number of “stubs”,ki , drawn
from the distributionP(k), under the constraint that the sum∑i ki is even.

• Pairs of these stubs are chosen uniformly at random and the corresponding vertices
are connected by an undirected edge.

Given the random nature of the edge assignment, this algorithm generates networks with
the expected degree distribution and no correlations between the degrees of connected
vertices. The model, as described above, allows the formation of multiple or self connec-
tions among vertices. Nevertheless, when the expected degree distribution has bounded
fluctuations, the number of such “pathological” connections is small an can be neglected
in the thermodynamic limit. In this case, one can add an extraconstraint in step two of
the algorithm avoiding multiple or self connections without modifying the resulting net-
work.

The picture changes drastically when the expected degree distribution has unbounded
fluctuations. This is precisely the case of SF distributionswith exponentγ ∈ (2,3]. In
this situation, vertices with expected degree satisfyingki >

√

〈k〉N cannot avoid to
form multiple connections. Indeed, as it was proved in [16],the number of multiple
connections in this case scales asN3−γ lnN. Yet the situation is not so dramatic since the
overall number of connections is much larger that the numberof multiple connections.
However, one has to be careful because the “hubs” of the network –those in the tail of
the distribution– are precisely the ones more prone to hold multiple connections and,
therefore, it could alter the results of dynamical processes evaluated on top of these
class of networks. There are two strategies one can follow inorder to avoid multiple
connections:

• One can introduce a constraint in step two prohibiting multiple connections. This
has the side effect of introducing strong disassortative degree correlations among
connected vertices.

• Alternatively, one can introduce a cut-off in the distribution P(k) scaling as
√

N.
By doing so, one recovers uncorrelated networks but with a smaller cut-off than the
natural one [17].

THE CONFIGURATION MODEL BEYOND γ = 2

The configuration model with expected degree distribution with γ ≤ 2 has not been stud-
ied so forth. This is an extreme situation in which the numberof multiple connections
cannot be neglected. We can take advantage of this fact to construct a weighted network,
where the weight between a pair of vertices is the number of multiple connections they
have [11, 18]. Now, the expected quantity of a given vertex isno longer its degree but
its strength. Therefore, let us change notation and denote by P(s) ∼ s−(1+τ), 0< τ ≤ 1,
the distribution of expected strengths, that is, the numberof expected connections of
vertices.



At the level of strength, vertices are uncorrelated and the average weight of edges
linking nodes of strengthssi andsj can be written as

ω̄i j =
sisj

2S
, (5)

whereS is the total number of connections –regardless they are multiple or not– in the
network, that is,

S=
1
2∑

i
si ∼ N1/τ (6)

The average degree of a vertex can be obtained as

k̄i = ∑
j

ω̄i j Θ(1− ω̄i j )+∑
j

Θ(ω̄i j −1), (7)

whereΘ(·) is the Heaviside step function. The first term in this equation is the con-
tribution of those connections that, on average, are smaller than 1. The second term
represents connections with an average number larger than 1and, thus, holding multiple
connections. In this case, the contribution to the degree isjust 1 and notω̄i j . Using the
expression for the weights, Eq. (5), in the continuum limit we can write

k̄(si) = N
∫ 2S/si

1
P(sj)

sisj

2S
dsj +N

∫ ∞

2S/si

P(sj)dsj (8)

that, in the thermodynamic limit goes as

k̄(si) ∼
1

ττ(1− τ)1−τ sτ
i . (9)

It is worth noticing that there are finite size effects that depend on the specific form of
the strength distribution. The model generates a non trivial weighted network with an
exponentβ = 1/τ larger than 1, as it is observed in real weighted networks [9].

The tail of the degree distribution can be obtained from thisscaling relation, yielding
an exponentγ = 2. Thus, even though the expected strength distribution hasan exponent
smaller than two, the resulting network has exponent equal to two and a number of
connections growing as∑i ki ∼ N lnN.

NUMERICAL SIMULATIONS

To test the results of our analysis, we have performed numerical simulations of the
configuration model, generating expected strength distributions of the form

P(s) ∼ 1
(s−sc)1+τ . (10)

The value ofsc modulates the probability to find strengths of value larger than 1. We
choose this particular form because, by an appropriate choice ofsc, the finite size effects
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FIGURE 1. Cumulative strength distributions, that is,Pc(s) = ∑s′≥sP(s′), used in the simulations. The
solid lines correspond to the theoretical curves given by Eq. (11)
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FIGURE 2. Simulation results for the average degree of vertices of strengths, k̄(s), as a function of
s, for τ = 0.95, τ = 0.85, andτ = 0.75. The size of the network isN = 105. In all cases, the strength
distribution is given by Eq. (10) withsc = τ. Solid lines correspond to the best fit estimates (numbers in
parenthesis into the legend box) of the theoretical behavior k̄(s) ∼ sτ .
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FIGURE 3. Cumulative degree distributions,Pc(k) = ∑k′=k P(k′), generated by de model. The solid line
is power law of the formk−1 corresponding to an exponentγ = 2.

are minimized. In all the simulations, the size of the network is N = 105, the values of
τ are 1.95, 1.85, and 1.75 andsc = τ. We first show, in Fig. 1, the cumulative strength
distributions used in the simulations as compared to the theoretical ones,

Pc(s) =
(1− τ)τ

(s− τ)τ , (11)

computed using the continuum approximation.
Fig. 2 shows the scaling relation betweenk̄(s) and the strengths. As it can be

seen, the theoretical predictionsτ is well satisfied, with the following estimates for the
exponentβ−1: β−1 = 0.74±0.01 for τ = 0.75, β−1 = 0.84±0.01 for τ = 0.85, and
β−1 = 0.95±0.01 for τ = 0.95. Finally, the resulting cumulative degree distributionis
plotted in Fig. 3, showing that this function goes, for largedegrees, ask−1 independent
of τ, as predicted by our analysis.

CONCLUSIONS

In summary, we have analyzed the behavior of the classical configuration model in the
case of expected strength distributions following a power law form of exponent smaller
than two. We have shown that, in this case, the resulting network is weighted, where
the weight stands for the number of multiple connections among vertices. The model
presents a non trivial scaling relation between strength and degree and a degree distri-
bution with exponentγ = 2, independent of the exponent of the strength distribution, τ.



These results highlight the subtleties that may arise when dealing with SF networks even
in the most simplified models.
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